a2 United States Patent

US009465933B2

10) Patent No.: US 9,465,933 B2

Chhabra et al. 45) Date of Patent: Oct. 11, 2016
(54) VIRTUALIZING A HARDWARE (56) References Cited
MONOTONIC COUNTER
U.S. PATENT DOCUMENTS
(71) Applicant: Intel Corporation, Santa Clara, CA 7350083 B2 3/2008 Wells et al.
(Us) 2004/0230673 Al* 11/2004 Lange-Pearson et al. ... 709/223
2005/0108601 Al* 5/2005 Driediger HO4L 12/5601
: : 714/712
(72) Inventors: Siddhartha Chhabra, Hillsboro, OR
. 2006/0187932 Al* 82006 Barthel et al. 370/394
(US); Reshma Lal, Hillsboro, OR (US); 3006/0271796 Al 11/2006 Kaimal et al.
Jason Martin, Beaverton, OR (US); 2008/0320263 Al* 12/2008 Nemiroff et al. 711/164
Daniel Nemiroff, Folsom, CA (US) (Continued)
(73) Assignee: Intel Corporation, Santa Clara, CA FOREIGN PATENT DOCUMENTS
(US)
KR 10-2008-0091347 A 10/2008
(*) Notice: Subject. to any disclaimer,. the term of this \I%/Ié) 2(1)?40/851;47‘582 ill 2%8(1)2
patent is extended or adjusted under 35
US.C. 154(b) by 47 days. OTHER PUBLICATIONS
(21) Appl. No.: 13/690,111 Sarmenta et al, “Virtual Monotonic Counters and Count-Limited
Objects using a TPM without a Trusted OS”, STC’06, Nov. 3, 2006,
(22) Filed: Nov. 30, 2012 Computer Science and Artificial Intelligence Laboratory (CSAIL),
Massachusetts Institute of Technology, Cambridge, MA 02139.*
(65) Prior Publication Data (Continued)
US 2014/0157404 Al Jun. 5, 2014 Primary Examiner — Joseph P Hirl
Assistant Examiner — Chi Nguy
(51) Int. CL (74) Attorney, Agent, or Firm — Thomas R. Lane
GO6F 21/00 (2013.01) (57) ABSTRACT
GOGF 21/50 (2013.01) Embodiments of an invention for virtualizing a hardware
GOG6F 21/54 (2013.01) monotonic counter are disclosed. In one embodiment, an
GO6F 21/71 (2013.01) apparatus includes a hardware monotonic counter, virtual-
52) US.CL ization logic, a first non-volatile storage location, and a
g g
CPC ... GO6F 21/50 (2013.01); GOGF 21/54 second non-volatile storage location. The virtualization
(2013.01); GOGF 21/71 (2013.01) logic is to create a virtual monotonic counter from the
(58) TField of Classification Search hardware monotonic counter. The first non-volatile storage

CPC ... HO4L 9/00; GOGF 21/86; GOGF 21/50;
GOGF 21/54; GOGF 21/71; GOGF 9/5077
USPC ..., 726/22; 380/283, 286; 713/166, 167,

713/168, 193-194
See application file for complete search history.

location is to store an indicator that the count of the
hardware monotonic counter has changed. The second non-
volatile storage location is to store an indicator that the count
of the virtual monotonic counter has changed.

18 Claims, 4 Drawing Sheets

System Architecture 200

User Secure Enclave 270

User Application 271

Trusted
Path
265

Service Secure Enclave 260

Service Application 261

| Virtual Monotonic Counter 294 |
[key2s7][ey 259]

System Memory 230

User Secure Memory Space 272

User Count 293
Data Blob 295

Service Secure Memory Space 262

HW Count 263

Database 280

Entry 281

ID 282 || Virtual Count 283

Trusted
Path
255

Processor 210

Key 257 || Key 259

Management Engine 250

Secure Enclave Logic 216

Encryption Unit 212

| Session Manager 251 | | SE Range Registers 213 || Access Control Logic 214

US 9,465,933 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2012/0163589 Al*
2012/0230460 Al*

6/2012 Johnson et al. 380/30
9/2012 Vyssotski et al. 377/26

OTHER PUBLICATIONS

Luis F. G. Sarmenta, Marten Van Dijk, Charles W. O’Donnell,
Jonathan Rhodes, and Srinivas Devdas, “Virtual Monotonic Coun-

ters and Count-Limited Objects using a TPM without a Trusted
08S,” STC ’06, Nov. 3, 2006, ACM 1-59593-548-7/06/0011, pp.
1-15%*

International Search Report and Written Opinion received for
International Application No. PCT/US2013/047257, mailed Oct.
17, 2013, 10 pages.

International Preliminary Report on Patentability received for Inter-
national Application No. PCT/US2013/047257, mailed Jun. 11,
2015, 7 pages.

* cited by examiner

US 9,465,933 B2

Sheet 1 of 4

Oct. 11, 2016

U.S. Patent

Op| @21AaQ 8bel0lg uonew.Io| 0g | Alows WalsAs

L1 J9jjonuon Aowspy walisAg

8G| Joyeoipu| abueyn ddy ao1nleg

91} 01607 |01U0D) J0SS820.1d

9G | Jojeoipu| abueyn ddy Josn

G Ll 1lun 8%ep8U|

#G| 191UNOD) OIUOIOUOIA MH

v 11 Aowsypy syoen

€9} sulyde\ SlEelS €11 abelols Buissad0.d

2G| 21607 j0auod JN

¢kl MH uoinoaxy

0G| duibug 1uswasbeuel
LLE MH uollonaisul

0c} QnH [043u0)

Ol 1ossdd0.d

001 wolsAs

I 3dNOI4

US 9,465,933 B2

Sheet 2 of 4

Oct. 11, 2016

U.S. Patent

Y1z 01607 |0JJUOD SSBAVY

¢1¢ sialsiboy abury 33

212 uun uondAioug

91z 21607 8AB|oUT 84N23G

012 10Ss820.d

€8¢ Uno) [enUIA || 8¢ dl

182 Anug

08¢ 9seqeled

£9¢ WunoD MH

29z ooedg AJoWa\ 21n29g 92IAI9S

g6¢ qoIg eled

£62 1UN0Y J8s

2.2 ooeds Aows|y 81noeg Jasn

0gzg Aowsy welshs

LG 1obruey UOISSOS

0Gez auibu3 Juswalbeuep

85z Aoy || 2S¢ Aoy

G&¢
Yyied
paisn.|

652 Aey || 2G5 Aey

$62 181UN07) DIUOIOUOI [BNUIA

| 92 uoneolddy 821A8S

092 8AB|OUT 81N08S 82IAI8S

192 Aoy

S9¢
yled
palsn. |

292 Aoy

| /2 uoneoljddy Jesn

0.¢ ©AE|oUT ©INJ3S I9SM

00¢ 8.n10811Y2.y WoISAg

¢ 34dNOId

US 9,465,933 B2

Sheet 3 of 4

Oct. 11, 2016

U.S. Patent

1sonba. 1o} Apesas dde ao1nles /€

+

oskeqelep |ess Q9¢

*

JUNO2 JBsn azZijeniul 9G¢

*

JUNOY [eNUIA SZI[RIIUI #GE

+

1UN0D AH SoAI89a. dde 821A18S 2GE

+

1UN0Y MH Sisenbal dde 821n18s 0GE

PRy dl 1es eve

+

aseqelep aleald Qe

*

DI sisenba. dde Jesn ogg

+

JI\ pue 33 801AI8S UsBMIaq Yled palsni] 81880 92§

+

SJS 90IAISS PUB J8SN Usamlaq yied paisnu) 81eald $2¢

+

3G J8Sn 81Bal0 22§

+

3S 99IAI8S 9130 02E

+

slojeolpul 8bueyo 1es|0 01§

00€ AOHL13IW
€ 3dNnoOld

US 9,465,933 B2

Sheet 4 of 4

Oct. 11, 2016

U.S. Patent

dde Jssn 0] uinjal 2ot

*

dde a21A18s 0] UINBI O9F

*

lo1eo1pul sBueyd Jasn 1es|d 8Gy

+

lo1eo|pul obueyd Jasn Jes|o
01 s||Beo dde 821n9S oGt

+

Joleoipul abueyo Josn Jes|o
0] s||eo dde Jasn Gt

+

go|q elep |ess gGf
+

p[81) JUNOD JOsN JuslWaIoul G
*

dde Jasn 0] winjal opt
+

dde a21a18S 0] UINB) Yt dd
+
loyeaipul oBueyd 991AI9S JBS|D Zi |
00 AOHL3AN
¥ 3dNDIH

dd

dd

101e01pUl 8BuBYD 821AISS JBD|D
0] s|[e2 dde 801nI8S Qv

*

9segeIep [Bos yEY

+

A4

plo1 JUNOD AMH JUSWAIOU! ZEY

+

Joreoipul sBueyo 18sSn 18

® JUNOD [BNLIA JUBWAIOUI ST

+

dde 82/A18s 0} UINBJ 92

*

Jojeoipul 8BueyD 801A18S 18S
® DN MH luswa.ul g

+

OIN MH luswalioul 01 s|eo dde aoinies gzy

+

DN [BNUIA JUBWSIdUI 0] S|B0 dde Jasn Qzv

+

1senbal Joy Apess dde aoinles QL1

US 9,465,933 B2

1
VIRTUALIZING A HARDWARE
MONOTONIC COUNTER

BACKGROUND

1. Field

The present disclosure pertains to the field of information
processing, and more particularly, to the field of security in
information processing systems.

2. Description of Related Art

In an information processing system, a technique to
protect the security of information may include the use of a
monotonic counter. For example, a monotonic counter value
may be included in a message to protect the message against
a replay attack.

BRIEF DESCRIPTION OF THE FIGURES

The present invention is illustrated by way of example
and not limitation in the accompanying figures.

FIG. 1 illustrates a system in which a hardware monotonic
counter may be virtualized according to an embodiment of
the present invention.

FIG. 2 illustrates a system architecture according to an
embodiment of the present invention.

FIG. 3 illustrates a method for initiating a virtual mono-
tonic counter according to an embodiment of the present
invention.

FIG. 4 illustrates a method for using a virtual monotonic
counter according to an embodiment of the present inven-
tion.

DETAILED DESCRIPTION

Embodiments of an invention for virtualizing a hardware
monotonic counter are described. In this description, numer-
ous specific details, such as component and system configu-
rations, may be set forth in order to provide a more thorough
understanding of the present invention. It will be appreci-
ated, however, by one skilled in the art, that the invention
may be practiced without such specific details. Additionally,
some well-known structures, circuits, and other features
have not been shown in detail, to avoid unnecessarily
obscuring the present invention.

In the following description, references to “one embodi-
ment,” “an embodiment,” “example embodiment,” “various
embodiments,” etc., indicate that the embodiment(s) of the
invention so described may include particular features,
structures, or characteristics, but more than one embodiment
may and not every embodiment necessarily does include the
particular features, structures, or characteristics. Further,
some embodiments may have some, all, or none of the
features described for other embodiments.

Also, the terms “bits,” “flags,” “fields,” “entries,” etc.,
may be used to describe any type of storage location in a
register, table, database, or other data structure, whether
implemented in hardware or software, but are not meant to
limit embodiments of the invention to any particular type of
storage location or number of bits or other elements within
any particular storage location. The term “clear” may be
used to indicate storing or otherwise causing the logical
value of zero to be stored in a storage location, and the term
“set” may be used to indicate storing or otherwise causing
the logical value of one, all ones, or some other specified
value to be stored in a storage location; however, these terms
are not meant to limit embodiments of the present invention
to any particular logical convention, as any logical conven-

29 < 29 <.

10

15

20

25

30

40

45

2

tion may be used within embodiments of the present inven-
tion. The term “increment” may be used to mean increase by
one, but embodiments of the present invention may be
possible in which “increment” may mean increase by a fixed
value, and in other embodiments it may be possible to
decrement or decrease instead of increment or increase.
However, not every such possibility is described.

As used in the claims, unless otherwise specified the use
of the ordinal adjectives “first,” “second,” “third,” etc. to
describe an element merely indicate that different instances
of like elements are being referred to, and is not intended to
imply that the elements so described must be in a particular
sequence, either temporally, spatially, in ranking, or in any
other manner.

As described in the background section, monotonic coun-
ters in information processing systems may be used in
techniques to protect the security of information. However,
an information processing system may have a limited num-
ber of hardware monotonic counters. Therefore, embodi-
ments of the present invention may be desired to provide for
the use of additional monotonic counters through virtual-
ization. Embodiments of the present invention may be
scalable in that the number of virtual monotonic counters
available for use may be increased as desired, even when the
number of hardware monotonic counters is limited. Embodi-
ments of the present invention may also be robust, for
example, by providing for correct operation even in the
event of power loss so that the security of information sealed
using a virtual monotonic counter is not compromised by a
reset or power removal attack.

FIG. 1 illustrates system 100, an information processing
system in which an embodiment of the present invention
may be present and/or operate. System 100 may represent
any type of information processing system, such as a server,
a desktop computer, a portable computer, a set-top box, a
hand-held device, or an embedded control system. System
100 includes processor 110, control hub 120, system
memory 130, and information storage device 140. Systems
embodying the present invention may include any number of
each of these components and any other components or
other elements, such as peripherals and/or input/output
devices. Any or all of the components or other elements in
any system embodiment may be connected, coupled, or
otherwise in communication with each other through any
number of buses, point-to-point, or other wired or wireless
connections.

Processor 110 may represent one or more processors
integrated on a single substrate or packaged within a single
package, each of which may include multiple threads and/or
multiple execution cores, in any combination. Each proces-
sor represented as processor 110 may be any type of pro-
cessor, including a general purpose microprocessor, such as
a processor in the Intel® Core® Processor Family, Intel®
Atom® Processor Family, or other processor family from
Intel® Corporation, or another processor from another com-
pany, or a special purpose processor or microcontroller.
Processor 110 may include instruction hardware 111, execu-
tion hardware 112, processing storage 113, cache memory
114, interface unit 115, and processor control logic 116.
Processor 110 may also include any other circuitry, struc-
tures, or logic not shown in FIG. 1, and/or any circuitry,
structures, or logic shown or described as elsewhere in FIG.
1. For example, system memory controller 117 may be
integrated on the substrate or packaged within the package
of processor 110.

Instruction hardware 111 may represent any circuitry,
structure, or other hardware, such as an instruction decoder,

US 9,465,933 B2

3

for fetching, receiving, decoding, and/or scheduling instruc-
tions. Any instruction format may be used within the scope
of the present invention; for example, an instruction may
include an opcode and one or more operands, where the
opcode may be decoded into one or more micro-instructions
or micro-operations for execution by execution hardware
112.

Execution hardware 112 may include any circuitry, struc-
ture, or other hardware, such as an arithmetic unit, logic unit,
floating point unit, shifter, etc., for processing data and
executing instructions, micro-instructions, and/or micro-op-
erations.

Processing storage 113 may represent any type of storage
usable for any purpose within processor 110; for example, it
may include any number of data registers, instruction reg-
isters, status registers, configuration registers, control reg-
isters, other programmable or hard-coded registers or reg-
ister files, or any other storage structures.

Cache memory 114 may represent any one or more levels
of cache memory in a memory hierarchy of information
processing system 100, implemented in static random access
memory or any other memory technology. Cache memory
114 may include any combination of cache memories dedi-
cated to or shared among any one or more execution cores
or processors within processor 110 according to any known
approaches to caching in information processing systems.

Interface unit 115 may represent any circuitry, structure,
or other hardware, such as a bus unit, messaging unit, or any
other unit, port, or interface, to allow processor 110 to
communicate with other components in system 100 through
any type of bus, point to point, or other connection, directly
or through any other component, such as a memory con-
troller or a bus bridge.

Processor control logic 116 may include any logic, cir-
cuitry, hardware, or other structures, including microcode,
state machine logic, or programmable logic, to control the
operation of the units and other elements of processor 110
and the transfer of data within, into, and out of processor
110. Processor control logic 116 may cause processor 110 to
perform or participate in the performance of method
embodiments of the present invention, such as the method
embodiments described below, for example, by causing
processor 110 to execute instructions received by instruction
hardware 111 and micro-instructions or micro-operations
derived from instructions received by instruction hardware
111.

Control hub 120 may include any logic, circuitry, or other
hardware to control or facilitate the transfer of information
between processor 110, system memory 130, information
storage device 140, and any other components in informa-
tion processing system 100, and/or any other operations or
functionality of information processing system 100. Control
hub 120 may include management engine 150, which may
represent a processor, controller, or any other logic, circuitry,
or other hardware to provide manageability, maintenance,
security, and/or virtualization functionality to information
processing system 100 separate from that of processor 110.
For example, management engine 150 may represent a
Manageability Engine to support Intel® Active Manage-
ment Technology.

Management engine 150 may include management
engine control logic 152, one or more hardware monotonic
counter(s) 154, user application change indicator 156, and
service application change indicator 158. Management
engine control logic 152 may include any logic, circuitry,
hardware, or other structures, including microcode, state
machine logic, programmable logic, or firmware, to control

10

15

20

25

30

35

40

45

50

55

60

65

4

the operation of management engine 150 and cause man-
agement engine 150 to perform or participate in the perfor-
mance of method embodiments of the present invention.

Hardware monotonic counter 154 may include circuitry or
other hardware to implement a monotonic counter according
to any known approach. In one embodiment, hardware
monotonic counter 154 may represent one of a set of
hardware monotonic counters used, designated, or reserved
for use according to embodiments of the present; for
example, it may represent one of a set of five hardware
monotonic counters of an Intel® Manageability Engine.

User application change indicator 156 and service appli-
cation change indicator 158 may each be a non-volatile data
storage element to store an indicator, such as a bit, to be used
according to method embodiments of the present invention.
In one embodiment, management engine control logic 152
may include state machine 153 that may use the state of user
application change indicator 156 and service application
change indicator 158 to ensure robustness, even in the event
of power loss, as described below.

System memory 130 may include dynamic random access
memory and/or any other type of medium accessible by
processor 110, and may be used to store data and/or instruc-
tions used or generated by processor 110 and/or any other
components.

Information storage device 140 may represent any type of
non-volatile information storage device, such as flash
memory or a hard disk drive.

FIG. 2 illustrates system architecture 200 according to an
embodiment of the present invention, showing service appli-
cation 261 and user application 271 executing, loaded into,
or otherwise present within an information processing sys-
tem such as information processing system 100. In FIG. 2,
service application 261 and user application 271 may each
represent an application within a secured, protected, or
isolated environment, such as a secure enclave as described
below. For purposes of this description, each instance of
such an environment may be referred to as a secure enclave,
although embodiments of the present invention are not
limited to those using a secure enclave as the environment
for service application 261 and user application 271. In FIG.
2, service application 261 is shown in service secure enclave
260 and user application 271 is shown in user secure enclave
270.

A secure enclave may be created and maintained using
instructions in the instruction set of a processor in the Intel®
Core® Processor Family or other processor family from
Intel® Corporation, the supporting hardware for which is
represented by secure enclave logic 216 in processor 210,
which may correspond to processor 110 in FIG. 1. Secure
enclave logic 216 may be included within any one or more
units of processor 210, such as those corresponding to
instruction hardware 111, execution hardware 112, and pro-
cessor control logic 116 of processor 110. Secure enclave
logic 216 may include encryption unit 212, which may
include any logic, circuitry, or other hardware to execute one
or more encryption algorithms and the corresponding
decryption algorithms.

Each secure enclave created within system architecture
200 may be allocated a secure or protected space within
system memory space 230. For example, service secure
memory space 262 may be allocated to the secure enclave
for service application 261 and user secure memory space
272 may be allocated to the secure enclave for user appli-
cation 271. Each such memory space may be created,
allocated, and maintained using known virtual memory,
secure enclave, or other system memory addressing tech-

US 9,465,933 B2

5

niques such that the information within each such memory
space may at various times be stored within any combination
of information storage device 140, system memory 130,
cache memory 114, and/or any other memory or storage area
within information processing system 100.

The information within the memory space of a secure
enclave is accessible only to the application running in that
secure enclave. For example, the information on a memory
page allocated to a secure enclave may be encrypted by
encryption unit 212 before being stored in system memory
130, storage device 140, or any other memory or storage
external to processor 210. While stored external to processor
210, this information is protected by encryption and integ-
rity check techniques. When this memory page is loaded into
cache memory 114 by an application or process running on
processor 210 within the secure enclave to which it is
allocated, it is decrypted by encryption unit 212, then
unencrypted information is accessible only by an application
or process running within the secure enclave. These loading
and access restrictions are enforced by secure enclave logic
216, which for this purpose may include secure enclave
range registers 213, access control logic 214, and any other
known logic, circuitry, or other hardware.

In FIG. 2, user application 271 and service application
261 may communicate with each other through trusted path
265, and service application 261 and session manager 251
running on management engine 250 may communicate with
each other through trusted path 255. Trusted paths 255 and
265 may each represent a trusted path or channel imple-
mented according to any known approach to ensure integrity
and confidentiality of the communication. Establishment of
trusted path 255 may include the authentication of session
manager 251 and service application 261 to each other;
establishment of trusted path 265 may include the authen-
tication of service application 261 and user application 271
to each other. The authentication and/or communication
protocol over trusted channels 255 and 265 may use encryp-
tion keys; for example, session manager 251 and service
application 261 may use primary key 257 to derive a
secondary key 259 each time service application 261 is
restarted; service application 261 and user application 271
may use key 267.

FIG. 3 illustrates method 300 for initializing a virtual
monotonic counter according to an embodiment of the
present invention. Although method embodiments of the
invention are not limited in this respect, reference may be
made to elements of FIGS. 1 and 2 to help describe the
method embodiment of FIG. 3.

In box 310 of method 300, user application change
indicator 156 and service application change indicator 158
may be cleared, for example, as part of an initialization
sequence or process for management engine 150.

In box 320, a secure enclave (e.g., service secure enclave
260) may be created for running a service application (e.g.,
service application 261). One purpose for running service
application 261 may be to provide for virtualizing a hard-
ware monotonic counter (e.g., hardware monotonic counter
154). In box 322, another secure enclave (e.g., user secure
enclave 270) may be created for running a user application
(e.g., user application 271). User application 271 may be run
for any purpose, and it may be desired for user application
271 to use a monotonic counter for any purpose.

For example, it may be desired for user application 271 to
use a monotonic counter for providing sealed storage in
which to protect information (e.g., data binary large object
or “blob” 295) against replay attacks. In this description, any
reference to using a monotonic counter to provide sealed

30

40

45

55

6

storage for information may include appending a current
monotonic counter value to a data blob such that when the
data blob is read, it may be determined whether the data has
been replayed (e.g., if the appended monotonic counter
value is older than the then-current monotonic counter
value) or attacked (e.g., if the appended monotonic counter
value is newer than the then-current monotonic counter
value), or any other such known approach. Other values may
also be appended to the data blob, such as a random number
generated when the monotonic counter has been reset, such
that when the data blob is read, it may be determined
whether the monotonic counter has been reset since the data
blob was stored, and/or an integrity check value. Any of
these approaches may include the use of an anti-replay table,
in which the monotonic counter values, random numbers,
and/or integrity check values corresponding to a data blob
are stored. Any such known approach may be used in
embodiments of the present invention, and any reference in
this description to appending a monotonic counter value to
a data blob may also include techniques according to these
approaches.

In box 324, a trusted path (e.g., trusted path 265) is
established for bi-directional communications between user
application 271 and service application 261. In box 326, a
trusted path (e.g., trusted path 255) is established for bi-
directional communications between service application 261
and session manager 251.

In box 330, user application 271 sends a request through
trusted path 265 to service application 261 for the use of a
monotonic counter.

In box 340, service application 261 creates a data struc-
ture (e.g., database 280) to be used to provide for the
virtualization of a monotonic counter. Database 280 may be
a data table including any number of entries, and each entry
(e.g., entry 281) may include a first field (e.g., ID field 282)
to store an identifier of a user application and a second field
(e.g., virtual count field 283) to store the current count value
of a virtual monotonic counter be allocated to the corre-
sponding user application. In box 342, service application
261 sets ID field 282 to an identifier of user application 271
and/or user secure enclave 270; for example, it may be a
value unique to user application 271 and/or user secure
enclave 270 that is derived from a measurement or other
report made for identity, integrity, or any other purpose.

In box 350, service application 261 sends a request
through trusted path 255 to session manager 251 for the
current count value of hardware monotonic counter 154. In
box 352, service application 261 receives the current count
value 155 of hardware monotonic counter 154. In box 354,
service application 261 stores the current count value 155 of
hardware monotonic counter 154 in hardware count field
263 in service secure memory space 262.

In box 354, virtual count field 283 may be initialized, e.g.,
to a predetermined initialization value, to the current count
value of hardware monotonic counter 154, or to any other
value. In box 356, the value of virtual count field 283 may
be sent to user application 271 to initialize user count field
293 in user secure memory space 272, which represents the
count of a virtual monotonic counter provided to user
application 271 by service application 261 (e.g., virtual
monotonic counter 294).

In box 360, service application 261 uses the value in
hardware count field 263 to seal database 280, for example
by appending the value in hardware count field 263 to a data
blob representing the contents of database 280 and storing
the result in service secure memory space 262.

US 9,465,933 B2

7

In box 370, service application 261 is ready for a request
to increment virtual monotonic counter 294. ID field 282 of
entry 281 of database 280 is storing an identifier of user
application 271 and/or user secure enclave 270. Virtual
count field 283 of entry 281 of database 280 and user count
field 293 in user secure memory space 272 are storing the
same value. Hardware count field 263 in service secure
memory space 262 is storing current count value 155 of
hardware monotonic counter 154. Database 280 in service
secure memory space 262 has been sealed with the value in
hardware count field 263. User application change indicator
156 and service application change indicator 158 have been
initialized to zero.

FIG. 4 illustrates method 400 for using a virtual mono-
tonic counter according to an embodiment of the present
invention. Although method embodiments of the invention
are not limited in this respect, reference may be made to
elements of FIGS. 1, 2, and 3 to help describe the method
embodiment of FIG. 4. Method may be described as con-
tinuing to a particular box in the event of power failure; in
some embodiments, power failure may also be meant to
include other interruptions.

In box 410 of method 400, service application 261 is
ready for a request to increment virtual monotonic counter
294, for example, box 410 of method 400 may correspond
to box 370 of method 300. ID field 282 of entry 281 of
database 280 is storing an identifier of user application 271
and/or user secure enclave 270. Virtual count field 283 of
entry 281 of database 280 and user count field 293 in user
secure memory space 272 are storing the same value.
Hardware count field 263 in service secure memory space
262 is storing current count value 155 of hardware mono-
tonic counter 154. Database 280 in service secure memory
space 262 has been sealed with the value in hardware count
field 263. User application change indicator 156 and service
application change indicator 158 have been initialized to
Zero.

In box 420, user application 271calls service application
261 to increment virtual monotonic counter 294. In box 422,
service application 261 calls session manager 251 to incre-
ment hardware monotonic counter 154.

In box 424, session manager 251 increments hardware
monotonic counter 154 and 251 sets service application
change indicator 158 to indicate that the change to hardware
monotonic counter 154 may not have propagated to service
application 261. In box 426, session manager 251 returns to
service application 261.

In box 430, service application 261 increments virtual
count field 283 and sets user application change indicator
156 to indicate that the change to virtual count field 283 may
not have propagated to user application 271. In box 432,
service application 261 increments hardware count field
263. In box 434, service application 261 uses hardware
count field 263 to seal database 280.

In box 440, service application 261 calls session manager
251 to clear service application change indicator 158. In box
442, session manager 251 clears service application change
indicator 158. In box 444, session manager 251 returns to
service application 261. In box 446, service application 261
returns to user application 271.

In box 450, user application 271 increments user count
field 293. In box 452, user application 271 uses user count
field 293 to seal data blob 295. In box 454, user application
271 calls service application 261 to clear user application
change indicator 156. In box 456, service application 261
calls session manager 251 to clear user application change

25

30

40

45

55

8

indicator 156. In box 458, session manager 251 clears user
application change indicator 156.

In box 460, session manager 251 returns to service
application 261. In box 462, service application 261 returns
to user application 271.

Service application change indicator 158 and user appli-
cation change indicator 156 may be used to provide robust-
ness in the event of a power failure. In the event of power
failure from any of boxes 424 or 426, flow may continue in
box 430 because it may be detected that service application
change indicator 156 has been set but user application
change indicator 158 has not been set. In the event of power
failure from any of boxes 430, 432, 434, or 440, flow may
continue in box 432 because it may be detected that service
application change indicator 156 and user application
change indicator 158 have been set. In the event of power
failure from any of boxes 442, 444, 446, 450, 452, 454, or
456, flow may continue in box 450 because it may be
detected that service application change indicator 158 has
been cleared but user application change indicator 156 has
been set.

In various embodiments of the present invention, the
methods illustrated in FIGS. 3 and 4 may be performed in a
different order, with illustrated boxes combined or omitted,
with additional boxes added, or with a combination of
reordered, combined, omitted, or additional boxes.

Embodiments or portions of embodiments of the present
invention, as described above, may be stored on any form of
a machine-readable medium. For example, all or part of
method 200 may be embodied in software or firmware
instructions that are stored on a medium readable by pro-
cessor 110 and/or management engine 150, which when
executed by processor 110 and/or management engine 150,
cause processor 110 and/or management engine 150 to
execute an embodiment of the present invention. Also,
aspects of the present invention may be embodied in data
stored on a machine-readable medium, where the data
represents a design or other information usable to fabricate
all of part of processor 110 and/or management engine 150.

Thus, embodiments of an invention for virtualizing a
hardware monotonic counter have been described. While
certain embodiments have been described, and shown in the
accompanying drawings, it is to be understood that such
embodiments are merely illustrative and not restrictive of
the broad invention, and that this invention not be limited to
the specific constructions and arrangements shown and
described, since various other modifications may occur to
those ordinarily skilled in the art upon studying this disclo-
sure. In an area of technology such as this, where growth is
fast and further advancements are not easily foreseen, the
disclosed embodiments may be readily modifiable in
arrangement and detail as facilitated by enabling techno-
logical advancements without departing from the principles
of the present disclosure or the scope of the accompanying
claims.

What is claimed is:

1. An apparatus comprising:

a hardware monotonic counter;

virtualization logic to create a virtual monotonic counter
from the hardware monotonic counter;

a first clearable non-volatile storage location to store a
first indicator to indicate change to the hardware mono-
tonic counter;

a second clearable non-volatile storage location to store a
second indicator to indicate change to the virtual mono-
tonic counter; and

US 9,465,933 B2

9

logic to detect whether the first indicator has been set and
the second indicator has not been set, to detect whether
the first indicator and the second indicator have been
set, and to detect whether the first indicator has been
cleared and the second indicator has been set, to
provide for correct operation of the virtual monotonic
counter in the event of power loss.

2. The apparatus of claim 1, further comprising secure
enclave logic to create a first secure enclave to store a count
of the virtual monotonic counter.

3. The apparatus of claim 2, wherein the secure enclave
logic is also to create a second secure enclave to use the
count of the virtual monotonic counter.

4. A method comprising:

storing a count of a virtual monotonic counter in a data

structure;

sealing the data structure using a count of a hardware

monotonic counter;
setting, in response to receiving a request to increment the
hardware monotonic counter, a service application
change indicator in a first clearable non-volatile storage
location to indicate change to the hardware monotonic
counter;
incrementing the count of the virtual monotonic counter
and setting a user application change indicator in a
second clearable non-volatile storage location to indi-
cate change to the virtual monotonic counter; and

detecting whether the service application change indicator
has been set and the user application change indicator
has not been set, to detect whether the service appli-
cation change indicator and the user application change
indicator have been set, and to detect whether the
service application change indicator has been cleared
and the user application change indicator has been set,
to provide for correct operation of the virtual mono-
tonic counter in the event of power loss.

5. The method of claim 4 further comprising storing a user
identifier in the data structure to identify a user of the virtual
monotonic counter.

6. The method of claim 5, further comprising sealing a
data blob using the count of the virtual monotonic counter.

7. The method of claim 6, further comprising creating a
service secure enclave to store the data structure.

8. The method of claim 7, further comprising creating a
user secure enclave to store the data blob.

9. The method of claim 8, further comprising creating a
first trusted path between the user secure enclave and the
service secure enclave.

10. The method of claim 9, further comprising creating a
second trusted path between the service secure enclave and
a session manager having access to the hardware monotonic
counter.

10

15

20

25

30

35

45

10

11. The method of claim 10, further comprising calling,
by a user application running in the user secure enclave, a
service application running in the service secure enclave to
increment the virtual monotonic counter.

12. The method of claim 11, further comprising calling,
by the service application in response to receiving a request
to increment the virtual monotonic counter, the session
manager to increment the hardware monotonic counter.

13. The method of claim 12, further comprising clearing
the service application change indicator after the hardware
monotonic counter change has propagated to the service
secure enclave.

14. The method of claim 12, further comprising clearing
the user application change indicator after the virtual mono-
tonic counter change has propagated to the user secure
enclave.

15. A system comprising:

a management engine including

a hardware monotonic counter,

virtualization logic to create a virtual monotonic coun-
ter from the hardware monotonic counter,

a first clearable non-volatile storage location to store a
first indicator to indicate that the hardware mono-
tonic counter has changed,

a second clearable non-volatile storage location to store
a second indicator to indicate that the virtual mono-
tonic counter has changed, and

logic to detect whether the first indicator has been set
and the second indicator has not been set, to detect
whether the first indicator and the second indicator
have been set, and to detect whether the first indi-
cator has been cleared and the second indicator has
been set, to provide for correct operation of the
virtual monotonic counter in the event of power loss;
and

a processor including secure enclave logic to create a first

secure enclave to store a count of the virtual monotonic

counter and second secure enclave to use the count of
the virtual monotonic counter.

16. The system of claim 15 wherein the secure enclave
logic includes an encryption unit to encrypt information
stored by a secure enclave.

17. The system of claim 15 wherein the secure enclave
logic includes secure enclave range registers for allocating a
secure memory space to a secure enclave.

18. The system of claim 15 wherein the secure enclave
logic include access control logic to prevent access to
unencrypted information cached by a secure enclave.

#* #* #* #* #*

